US009246816B2

a2z United States Patent (10) Patent No.: US 9,246,816 B2
Borlick et al. (45) Date of Patent: Jan. 26, 2016
(54) INJECTING CONGESTION IN A LINK 6,477,143 Bl 11/2002 Ginossar
BETWEEN ADAPTORS IN A NETWORK 7,380,019 B2 52008 Shiga etal.
7,975,027 B2 7/2011 Dickens et al.
. . 8,144,602 B2 3/2012 Beyers
(71) Applicant: GLOBALFOUNDRIES INC., Grand 2003/0115355 Al 62003 Cometio et al.
Cayman (KY) 2003/0185154 Al 10/2003 Mullendore et al.
2005/0108444 Al 5/2005 Flauaus et al.
(72) Inventors: Matthew G. Borlick, Tucson, AZ (US); 2009/0300209 A1* 12/2009 Elzurcccocooeinn. 709/234
: . 2012/0014253 Al 1/2012 Rongong et al. ... 370/235
Steven E. Klein, Tucson, AZ (US) / o al /
Ashwani Kuma,r TuCSOil AZ (US,) 2014/0337674 Al* 11/2014 Ivancicetal. 714/43
(73) Assignee: GLOBALFOUNDRIES INC., Grand OTHER PUBLICATIONS
Cayman (KY) R. Jain, “Delay-Based Approach for Congestion Avoidance in Inter-
(*) Notice: Subject to any disclaimer, the term of this E(Z)I;I;Zcrzije;mfgneous Computer Networks”, Digital Equipment
%atserg 1lssixlt)ertde(i 6? dadjmed under 35 56" A ppl. No. 14/023,449, filed Sep. 10, 2013, titled “Injecting
i (b) by ays. Congestion in a Link Between Adaptors in a Network”.
. Office Action dated Aug. 4, 2015, pp. 23, for U.S. Appl. No.
(21) Appl. No.: 14/023,456 14/023,449, filed Sep. 10, 2013.
- Response dated Sep. 27, 2015, pp. 12, to Office Action dated Aug. 4,
(22) Filed: Sep. 10, 2013 2015, pp. 23, for U.S. Appl. No. 14/023,449, filed Sep. 10, 2013.
(65) Prior Publication Data * cited by examiner
US 2015/0071070 Al Mar. 12, 2015
(51) Int.CL Prir.nary Examil.wr — Edan (?rgad
HO4L 12/801 (2013.01) Assistant Examiner — Saumit Shah
HO4L 12/891 (2013.01) (74) AIZOrney, Agent, or Firm — Yuanmin Cai; Hoffman
HO4L 12/26 (2006.01) Warnick LLC
(52) US.CL
CPC ..o HO4L 47/11 (2013.01); HO4L 47/39
(2013.01); HO4L 47/41 (2013.01): HO4L 43/50 ~ ©7) ABSTRACT
. . . (2013.01) Provided are a computer program product, system, and
(58) Field of Classification Search method for injecting congestion in a link between adaptors in
None o) a network. A congestion request is received for the selected
See application file for complete search history. adaptor at a containing network component comprising one
. of the network components. In response to the received con-
(56) References Cited gestion request, servicing the selected adaptor is delayed to
U.S. PATENT DOCUMENTS introduce congestion on a link between the selected adaptor
o and the linked adaptor.
4616359 A 10/1986 Fontenot

5,193,151 A
6,134,219 A

3/1993 Jain
10/2000 Sato

23 Claims, 6 Drawing Sheets

500
/

< Initiate operation to inject congestion at a port.)

502
/

Receive user selecti

jon of a selected port

in a selected adaptor to inject cangastion.

504
[

Receive user selection of a delay duration
for the congestion at the selected port.

506
/

Generate a congestion request identifying
the selected port and the delay period.

508
[

| Transmit the congestion request to the selected port. I

US 9,246,816 B2

Sheet 1 of 6

Jan. 26, 2016

U.S. Patent

[94
vaH va || || van van || || van vaH
\Upor 6po1 - \8p01 Lyo1 -~ =901 Spor -~
1SOH 1SOH 1SOH
] _ 7 . A
Uz01 90T 5701 901 901 bzo1
\ 7
vaH vaH vaH vaH
Ngor Lo \tgor Egor
van] S [yeq —{ver IS Tyan
\9g01 901 7901 g1 Tgo1 -~/
\ £ ¢ \ I
%011 —~ 901 —901 Torp [—~'901
YaH YaH _mm_w%_s_ VaH YaH
01123
\-tyor Epor -7 Jonse3ioy o1 Tpor 7
1S0H 1S0H
/ / [
211 150
¢ 1S0H I L
201 : 201 Tt
¢z01

U.S. Patent

Jan. 26, 2016 Sheet 2 of 6 US 9,246,816 B2
500
202 204 206
/ [/
Congestion Ada
ptor/ Delay
R%%%%St Port Duration FIG. 2
Congestion Request
300~
Network Component
V- 3024 Is 302
HBA HBA
304; 304, 3044 304, 3045 3044
308~ Processor | 306 FIG. 3
312~ Memory
Adaptor 316 400
Driver Port
0
310\ Information
Operating Buffer
System Quee
400
402 404 406 408 410 412 414
/ / / / / / [
Port Adaptor Buffer | Buffer | Congestion Delay %%ﬁ'
] Queue | Counter Flag Duration Time

Port Information

FIG. 4

U.S. Patent Jan. 26, 2016 Sheet 3 of 6

500
[

US 9,246,816 B2

< Initiate operation to inject congestion at a port.

A 4

502
[

Receive user selection of a selected port
in a selected adaptor to inject congestion.

A 4

504
[

Receive user selection of a delay duration
for the congestion at the selected port.

A\ 4

506
[

Generate a congestion request identifying
the selected port and the delay period.

A 4

508
[

Transmit the congestion request to the selected port.

FIG. 5

U.S. Patent Jan. 26, 2016 Sheet 4 of 6 US 9,246,816 B2

600
Receive a congestion request for a selected adaptor/
port having a delay time period.
602
A 4 /

Update the port information for the selected port to set the congestion flag
to indicate to delay servicing the port, indicate the delay duration from the
request, and initialize delay start time.

FIG. 6

700
/
Receive a stop congestion request for a selected
< adaptor/port having a delay time period. >
702
v /

Update the port information for the selected port to set the congestion flag
to indicate to not delay servicing the port, clear the delay duration and the
delay start time.

FIG. 7

U.S. Patent Jan. 26, 2016 Sheet 5 of 6 US 9,246,816 B2

800
[

< Initiate operation to perform service routine with respect >

to a port (e.g., add buffers to port buffer queue).

Does the
congestion flag indicate

No

to delay servicing?

806

End without servicing (e.g., adding
new buffers to port buffer queus).

Has delay of
servicing exceeded
the delay duration?

808
} [
Reset the delay start time.

810
A4 /

| Perform service routine (e.g., add buffers to port buffer
| queue if number of queued buffers below threshold).

FIG. 8

US 9,246,816 B2

Sheet 6 of 6

Jan. 26, 2016

U.S. Patent

6 9l

(S)801A(
[eula)p

A ,
816

J1a1depy ylomiaN

6

A

(S)asepialu|

A

0/l

fejdsig

€16

916
V16

A /
¢
—~ 806

¢16

A 4

aljoen

fiowsa|

A 4

WYY

016

\ 4
F 3

906

v

Hun
8uIssa20.

\
706

Wa)sAS Jaandwoen

\
206

026

US 9,246,816 B2

1

INJECTING CONGESTION IN A LINK
BETWEEN ADAPTORS IN A NETWORK

BACKGROUND OF THE INVENTION

1. Field of the Invention

The present invention relates to a computer program prod-
uct, system, and method for injecting congestion in a link
between adaptors in a network.

2. Description of the Related Art

In a Storage Area Network, congestion occurs as a conse-
quence of a slow draining adaptor in the network, which
causes delays and congestion in a link between the slow
draining adaptor and a linked adaptor. Fibre Channel adaptors
are assigned credits indicating a number of frames an adaptor
may transmit to a linked port. Upon sending a frame to the
linked port, credits are decremented. Upon receiving a reply
from the receiving port indicating the frame was processed,
credits are incremented. Sending or receiving frames is halted
for the duration that the respective buffer credit is zero. Dur-
ing the period of zero buffer credit, the adaptor enters error
path handling mode. Proper handling of errors such as time
outs, lost frames, alternate path selection, etc. is critical for
the successful operation of the adaptor. Debugging and pro-
viding fixes once the product is in field is much more expen-
sive than catching these problems during the development
cycle. For these reasons, developers may want to force con-
gestion among the links in a network to test how the adaptors
and components handle errors.

To introduce congestion in the network during develop-
ment, hardware devices referred to as jammers may be con-
nected to the network and simulate dropped frames or con-
gested links. Additional components may be provided to
overload the target ports and test error handling at the ports.

SUMMARY

Provided are a computer program product, system, and
method for injecting congestion in a link between adaptors in
a network. A congestion request is received for the selected
adaptor at a containing network component comprising one
of the network components. In response to the received con-
gestion request, servicing the selected adaptor is delayed to
introduce congestion on a link between the selected adaptor
and the linked adaptor.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 illustrates an embodiment a network computing
environment.

FIG. 2 illustrates an embodiment of a congestion request.

FIG. 3 illustrates an embodiment of a network component.

FIG. 4 illustrates an embodiment of port information.

FIG. 5 illustrates an embodiment of operations to inject
congestion at a port.

FIG. 6 illustrates an embodiment to process a congestion
request.

FIG. 7 illustrates an embodiment to process a stop conges-
tion request.

FIG. 8 illustrates an embodiment of operations to perform
servicing of a port.

FIG. 9 illustrates an embodiment of a computer system in
which embodiments may be implemented.

DETAILED DESCRIPTION

Described embodiments provide techniques to inject con-
gestion into a network by causing delays in servicing a

10

15

20

25

30

35

40

45

50

55

60

65

2

selected port for congestion in the network component
including the selected port. The delays may cause the adaptor
having the selected port to not return buffer credits to a linked
port so that the linked port runs out of credits and is then
unable to transmit further frames to the selected port, thereby
introducing congestion on the link between the selected port
and a linked port. During the development phase or to provide
customer support, congestion may be introduced to a link in
the network to test how the network component, such as a
switch or host, including the selected port subject to the
congestion injection, handles errors resulting from the con-
gestion.

FIG. 1 illustrates a network computing environment 100
having a plurality of hosts 102, 102, . . . 102, that each
include one or more host bus adaptors HBAs 104,, 104, . . .
104,,, where each HBA includes one or more ports (not
shown). Network lines or cables 106,, 106, . . . 106, connect
ports onthe HBAs 104,104, . .. 104, to ports (not shown) on
HBA108,,108,...108, on one ofthe switches 110, ... 110,
The network 100 implemented by the interconnected hosts
102,,102, . .. 102 and switches 110, .. . 110, may imple-
ment one or more network protocols known in the art, includ-
ing Fibre Channel, Ethernet, Infiniband, etc.

The use of variable references, such as j, k, m, n, and o
denote a variable number of the instances of the elements and
may indicate a same number or different number of the ele-
ments, such as the hosts, switches, and HBAs. Further,
although a certain number of adaptors, hosts, switches, and
links are shown, this is by way of example, and various
implementations may include any number of hosts, switches
and adaptors therein in different implementations of the net-
work 100.

One or more of the hosts, such as host 102, may include a
congestion injection manager 112 component to generate
congestion requests to the adaptors 104,,104,...104,,108,,
108, .. . 108, on the hosts 102, 102, . . . 102, and switches
110, . .. and 110, to cause congestion and delays in the links
106,,106, . .. 106, between a selected port on a selected (host
or switch) adaptor to which the congestion request is directed
and a linked port on a linked (host or switch) adaptor. The
congestion request may cause the network component 102,
102,...102,,110, ...110, to which the congestion request
is directed to delay servicing the selected port/adaptor in the
request to cause delays on the link 106,106, . .. 106, between
the selected port on the selected adaptor 104,104, ...104,,,
108,, 108, . . . 108, and the linked port on the linked host or
switch adaptor108,,108,...108,,104,,104,...104,,108,,
108, . .. 108,. Thus, congestion may be introduced on a link
between a host and switch or between switches. For instance,
the network component 102,, 102, . . . 102,, 110, .. . 110,
including the selected port may delay allocating buffers for
the selected port so that the port may run out of buffers and
may not be able to reply ready to the linked port. This may
cause the linked port on the linked adaptor 104, 104, . . .
104,,, 108,, 108, . . . 108, to run out of buffer credits, which
would preclude the linked adaptor 108, 108, . . . 108, from
sending or receiving further frames with respect to the con-
nected selected host port, which causes congestion on the link
106,106, ... 106,.

An adaptor developer may want to use the congestion
injection manager 112 to inject congestion on links 106,
106, . . . 106, in the network 100 to determine whether the
host, switch and adaptor code is capable of adequately han-
dling errors caused by the introduced congestion. This con-
gestion injection manager 112 may be used during develop-
ment of the host, switch and adaptor code and is implemented
by introducing firmware into the host 102, 102, . . . 102,

US 9,246,816 B2

3

switches 110, . . . 110, and adaptors 104,, 104, . . . 104,
108,,108, .. .108, to test how the components and firmware
handles errors resulting from congestion on the links between
adaptor ports in the network.

FIG. 2 illustrates an embodiment of a congestion request
200 generated by the congestion injection manager 112
including a congestion request code 202 identifying the
request as a congestion request; a user or machine selected
adaptor/port 204 to which the congestion request is directed;
and a delay duration 206 during which the servicing of the
selected adaptor/port 204 is delayed to cause congestion on
the link 106,, 106, . . . 106, between the selected adaptor/port
204 and the port to which the selected adaptor/port 204 links.
In one embodiment, the request may be directed to a single
port on a selected adaptor 104,104, ... 104, 108,,108, ...
108,. Alternatively, the request may be directed to an adaptor
104,,104, ...104,, 108,, 108, . . . 108, to cause delays in
servicing for all ports on the selected adaptor 204 to cause
congestion on the links 106,, 106, . . . 106, between all ports
on the selected adaptor 204 and the linked ports on one or
more linked adaptors 104,,104,...104,,,108,,108,...108,
in the network 100. The identified port 204 may comprise a
worldwide name or other unique identifier of the port.

FIG. 3 illustrates an embodiment of a network component
300, such as one of the hosts 102,, 102, . .. 102, and switches
110, ...110,, including one or more HBAs 302,, 302,, each
including one or more ports 304,,304, . . . 304; a processor
306, comprising one or central processing units (CPUs) hav-
ing one or more processing cores; and a memory 308 includ-
ing program components processed by the processor 306. The
memory 308 includes a network component operating system
310; an adaptor driver 312 to interface between the HBAs
302,, 302, and the operating system 306; port information
400 having information on the available ports 304, . .. 304;
and buffer queues 316 to provide buffers allocated in the
memory 308 for use with the ports 304, . . . 304, to buffer
frames received from the linked port/adaptor in another net-
work component. There may be one buffer queue 316 for each
port 304, . . . 304,. Further, although a certain number of
HBAs and ports are shown, various implementations may
include any number of HBAs and ports in the network com-
ponent 300. In Fibre Channel implementations, when the
adaptor 302,, 302, stores a received frame to a buffer from the
buffer queue 316, the adaptor 302,, 302, may return a
receiver-ready (R_Ready) to the transmitting adaptor to cause
the transmitting adaptor to increment available credits for the
linked port on the transmitting side to allow the transmitting
port to be used to transmit further frames to the port 304,
304, . .. 304, on which the R-Ready is returned.

In the embodiment of FIG. 3, the adaptor driver 312 is
shown as code implemented in a computer readable storage
medium executed by the processor 306. Alternatively, the
adaptor driver 312 may be implemented with hardware logic,
such as an Application Specific Integrated Circuit (ASIC).

FIG. 4 illustrates an embodiment of an instance 400, of the
port information for one of the ports, e.g., ports 304,304, . ..
304,. The port information 400, for one port includes a port
identifier (ID) 402; an adaptor 404 having the port 402; a
buffer queue 406 pointing to the buffer queue for the port 402
in the memory 308; a bufter counter 408 indicating a number
of available buffers in the buffer queue 406 for the port 402,
where the buffer counter 408 is incremented when the adaptor
driver 312 allocates a buffer in the memory 308 for the buffer
queue 406 and is decremented when the adaptor 404 uses one
of the buffers in the buffer queue 406 for a frame transmitted
on the port 402; a congestion flag 410 indicating whether the
driver 312 should delay servicing the port 402, e.g., adding

10

15

20

25

30

35

40

45

50

55

60

65

4

buffers to the buffer queue 316; a delay duration indicating a
time during which the servicing of the port 402 is delayed;
and a delay start time 414 indicating a start of the current
delay time used to determine whether the delay of the servic-
ing has occurred for the duration 412 extending from the start
time 414.

FIG. 5 illustrates an embodiment of operations performed
by the congestion injection manager 112 to generate a con-
gestion request 200. Upon initiating (at block 500) the opera-
tion to inject congestion in a port on an HBA 104,104, . . .
104,,108,,108, . . .108,, the congestion injection manager
112 receives (at block 502) user or machine selection of a
selected port in a selected adaptor to inject congestion. The
connection injection manager 112 may render a graphical
user interface (GUI) providing a graphical display showing
links and connections in the network 100 to enable the user to
select a port of a link on which to inject congestion. The
connection injection manager 112 also receives (at block 504)
user or machine selection of a delay duration for delaying
servicing the selected port to introduce congestion. A conges-
tion request 200 is generated including a congestion request
code 202, the selected adaptor or port 204, and the delay
duration 206 entered by the user. The congestion request 200
is then transmitted (at block 508) to the selected port 204 to
process.

FIG. 6 illustrates an embodiment of operations performed
by the adaptor driver 312 to process a congestion request 200
received on the selected port 304, 304, . . . 304,. Upon
receiving the request, the adaptor 302,, 302, having the
selected port 304,, 304, . . . 304,. may forward the request to
the adaptor driver 312 to process. Upon the driver 312 receiv-
ing (at block 600) the request 200, the adaptor driver 312
updates (at block 602) the port information 400, for the
selected port to set the congestion flag 410 to indicate to delay
servicing the identified port 204, indicate the delay duration
206 from the request 200 in the delay duration field 412, and
initialize the delay start time 414 to a current time or initial
value.

FIG. 7 illustrates an embodiment of operations performed
by the adaptor driver 312 to process a congestion stop request
received on the selected port 304,304, . . . 304,.

Upon receiving the request, the adaptor 302,, 302, having
the selected port 304,, 304, . . . 304, may forward the stop
congestion request to the adaptor driver 312 to process. Upon
the driver 312 receiving (at block 700) the stop congestion
request, the adaptor driver 312 updates (at block 702) the port
information 400, for the selected port to set the congestion
flag 410 to indicate to not delay servicing the identified port
204 and clear the delay duration 412 and the delay start time
414.

FIG. 8 illustrates an embodiment of operations performed
by the adaptor driver 312 to perform a service routine with
respect to a port. In certain embodiments, the service routine
may comprise operations to allocate additional buffers to the
buffer queue 316 for the port so that the port 304,, 304, . . .
304, will not run out of buffers, which would result in the
HBA 302, 302, having the port 304,, 304, . . . 304, not
returning ready to the transmitting adaptor to cause the trans-
mitting port to run out of buffer credits and not be able to
transmit any further frames to the port 304,, 304, . . . 304,
resulting in congestion. In alternative embodiments, the ser-
vice routine to which the delay is introduced may affect other
adaptor driver 312 operations for the ports whose delay would
introduce congestion on the link 106,, 106, . . . 106, between
the port 304, 304, . . . 304, subject to the processing of F1G.
8 and a linked port.

US 9,246,816 B2

5

Upon initiating (at block 800) the port servicing, e.g., allo-
cating new buffers to the buffer queue 316 for the port, if (at
block 802) the congestion flag 310 indicates to delay the
servicing, then the adaptor driver 312 determines (at block
804) whether the delay of servicing time has exceeded the
delay duration 412. The delay of servicing time may comprise
a difference of a current time and the delay start time 414. If
(from the no branch of block 804) the delay of the servicing
has exceeded the delay duration 412, then the adaptor driver
312 ends (at block 806) the routine without performing the
servicing operation, e.g., allocating new buffers to the port
buffer queue 316).

If (at block 804) the delay of servicing has extended for
more than the delay duration 208, then the delay start time
414 is reset (at block 808) and the adaptor driver 312 performs
(at block 810) the service routine (e.g., allocates bufters to the
port buffer queue 316 if the number of queued buffers, as
indicated in the buffer counter 408, is below a threshold
setting. Control then proceeds from block 810 back to block
802 to continue to delay servicing if the congestion flag 310
remains set. [n this way, some reliefto the injected congestion
is provided after the delay duration, except that following the
servicing after the delay duration, another iteration of the
delay of servicing continues for the delay duration. These
iterations of delaying of servicing for the delay duration con-
tinues until the congestion stop request is received that resets
the congestion flag 410 to stop the delays in servicing.

In the described embodiments, congestion is injected by
causing the adaptor driver 312 to delay servicing the selected
port, such as by not allocating further buffers to cause the
adaptor 302,, 302, to stop returning ready to the linked port so
that the linked port runs out of buffer credits and is prevented
from transmitting frames to the selected port 304, 304, . . .
304,. In alternative embodiments, the delay in servicing may
involve operations other than preventing the selected adaptor
from allocating credits which results in congestion being
introduced. Further, in alternative embodiments, the conges-
tion related operations may be performed by a component
other than the adaptor driver 312. For instance, code in the
adaptor itself 302,, 302, may delay certain operations to
cause the linked adaptor or port to run out of credits thereby
introducing congestion into the link and network 100.

With the described embodiments, congestion on a link may
be introduced by communicating a congestion request to a
selected port to cause the adaptor driver 312 or other compo-
nent to delay servicing the selected port so that congestion is
introduced on a link 106, 106, . . . 106, between the selected
port and a linked port. This allows a developer of the host
firmware to introduce congestion into a link to test how the
adaptor and host firmware handles errors resulting from the
congestion. Described embodiments allow the introduction
of targeted congestion on specific ports for specified dura-
tions by providing modifications to the adaptor and host firm-
ware, without requiring that specialized hardware devices be
introduced into the network 100 to simulate congestion con-
ditions. Further, following development, the host and adaptor
firmware released to customers may or may not include the
congestion handling code.

In yet further implementations, the host, switch and adap-
tor firmware released to customers may include the conges-
tion related code to allow the vendor to troubleshoot and
service host, switches, and adaptors at customer sites by
introducing congestion to determine whether congestion han-
dling problems are resulting in customer complaints.

The described operations may be implemented as a
method, apparatus or computer program product using stan-
dard programming and/or engineering techniques to produce

10

15

20

25

30

35

40

45

50

55

60

65

6

software, firmware, hardware, or any combination thereof.
Accordingly, aspects of the embodiments may take the form
of an entirely hardware embodiment, an entirely software
embodiment (including firmware, resident software, micro-
code, etc.) or an embodiment combining software and hard-
ware aspects that may all generally be referred to herein as a
“circuit,” “module” or “system.” Furthermore, aspects of the
embodiments may take the form of a computer program prod-
uct embodied in one or more computer readable medium(s)
having computer readable program code embodied thereon.

Any combination of one or more computer readable medi-
um(s) may be utilized. The computer readable medium may
be a computer readable signal medium or a computer read-
able storage medium. A computer readable storage medium
may be, for example, but not limited to, an electronic, mag-
netic, optical, electromagnetic, infrared, or semiconductor
system, apparatus, or device, or any suitable combination of
the foregoing. More specific examples (a non-exhaustive list)
of the computer readable storage medium would include the
following: an electrical connection having one or more wires,
a portable computer diskette, a hard disk, an application spe-
cific integrated circuit (ASIC), a random access memory
(RAM), a read-only memory (ROM), an erasable program-
mable read-only memory (EPROM or Flash memory), an
optical fiber, a portable compact disc read-only memory (CD-
ROM), an optical storage device, a magnetic storage device,
orany suitable combination of the foregoing. In the context of
this document, a computer readable storage medium may be
any tangible medium that can contain or store a program for
use by or in connection with an instruction execution system,
apparatus, or device.

A computer readable signal medium may include a propa-
gated data signal with computer readable program code
embodied therein, for example, in baseband or as part of a
carrier wave. Such a propagated signal may take any of a
variety of forms, including, but not limited to, electro-mag-
netic, optical, or any suitable combination thereof. A com-
puter readable signal medium may be any computer readable
medium that is not a computer readable storage medium and
that can communicate, propagate, or transport a program for
use by or in connection with an instruction execution system,
apparatus, or device.

Program code embodied on a computer readable medium
may be transmitted using any appropriate medium, including
but not limited to wireless, wireline, optical fiber cable, RF,
etc., or any suitable combination of the foregoing.

Computer program code for carrying out operations for
aspects of the present invention may be written in any com-
bination of one or more programming languages, including
an object oriented programming language such as Java,
Smalltalk, C++ or the like and conventional procedural pro-
gramming languages, such as the “C” programming language
or similar programming languages. The program code may
execute entirely on the user’s computer, partly on the user’s
computer, as a stand-alone software package, partly on the
user’s computer and partly on a remote computer or entirely
on the remote computer or server. In the latter scenario, the
remote computer may be connected to the user’s computer
through any type of network, including a local area network
(LAN) or a wide area network (WAN), or the connection may
be made to an external computer (for example, through the
Internet using an Internet Service Provider).

Aspects of the present invention are described above with
reference to flowchart illustrations and/or block diagrams of
methods, apparatus (systems) and computer program prod-
ucts according to embodiments of the invention. It will be
understood that each block of the flowchart illustrations and/

US 9,246,816 B2

7

or block diagrams, and combinations of blocks in the flow-
chart illustrations and/or block diagrams, can be imple-
mented by computer program instructions. These computer
program instructions may be provided to a processor of a
general purpose computer, special purpose computer, or other
programmable data processing apparatus to produce a
machine, such that the instructions, which execute via the
processor of the computer or other programmable data pro-
cessing apparatus, create means for implementing the func-
tions/acts specified in the flowchart and/or block diagram
block or blocks.

These computer program instructions may also be stored in
a computer readable medium that can direct a computer, other
programmable data processing apparatus, or other devices to
function in a particular manner, such that the instructions
stored in the computer readable medium produce an article of
manufacture including instructions which implement the
function/act specified in the flowchart and/or block diagram
block or blocks.

The computer program instructions may also be loaded
onto a computer, other programmable data processing appa-
ratus, or other devices to cause a series of operational steps to
be performed on the computer, other programmable appara-
tus or other devices to produce a computer implemented
process such that the instructions which execute on the com-
puter or other programmable apparatus provide processes for
implementing the functions/acts specified in the flowchart
and/or block diagram block or blocks.

FIG. 9 illustrates an embodiment of a computer system 902
which may comprise an implementation of the network com-
ponents 300, 102,, 102, . ..102,, and 110, .. . 110,. Com-
puter node 902 is only one example of a suitable computing
node and is not intended to suggest any limitation as to the
scope of use or functionality of embodiments of the invention
described herein. Regardless, computer node 902 is capable
of'being implemented and/or performing any of the function-
ality set forth hereinabove.

The computer node 902 is operational with numerous other
general purpose or special purpose computing system envi-
ronments or configurations. Examples of well-known com-
puting systems, environments, and/or configurations that
may be suitable for use with computer node 902 include, but
are not limited to, personal computer systems, server com-
puter systems, thin clients, thick clients, handheld or laptop
devices, multiprocessor systems, microprocessor-based sys-
tems, set top boxes, programmable consumer electronics,
network PCs, minicomputer systems, mainframe computer
systems, and distributed cloud computing environments that
include any of the above systems or devices, and the like.

Computer node 902 may be described in the general con-
text of computer system executable instructions, such as pro-
gram modules, being executed by a computer system. Gen-
erally, program modules may include routines, programs,
objects, components, logic, data structures, and so on that
perform particular tasks or implement particular abstract data
types. Computer node 902 may be practiced in distributed
cloud computing environments where tasks are performed by
remote processing devices that are linked through a commu-
nications network. In a distributed cloud computing environ-
ment, program modules may be located in both local and
remote computer system storage media including memory
storage devices.

As shown in FIG. 9, computer node 902 is shown in the
form of a general-purpose computing device. The compo-
nents of computer system/server 902 may include, but are not
limited to, one or more processors or processing units 904, a

10

15

20

25

30

35

40

45

50

55

60

65

8

system memory 906, and a bus 908 that couples various
system components including system memory 906 to proces-
sor 904.

Bus 908 represents one or more of any of several types of
bus structures, including a memory bus or memory controller,
aperipheral bus, an accelerated graphics port, and a processor
orlocal bus using any of a variety of bus architectures. By way
of example, and not limitation, such architectures include
Industry Standard Architecture (ISA) bus, Micro Channel
Architecture (MCA) bus, Enhanced ISA (EISA) bus, Video
Electronics Standards Association (VESA) local bus, and
Peripheral Component Interconnects (PCI) bus.

Computer node 902 typically includes a variety of com-
puter system readable media. Such media may be any avail-
able media that is accessible by computer node 902, and it
includes both volatile and non-volatile media, removable and
non-removable media, and may be used for storing the pro-
grams and data used by the programs.

System memory 906 can include computer system read-
able media in the form of volatile memory, such as random
access memory (RAM) 910 and/or cache memory 912. Com-
puter node 902 may further include other removable/non-
removable, volatile/non-volatile computer system storage
media. By way of example only, storage system 913 can be
provided for reading from and writing to a non-removable,
non-volatile magnetic media (not shown and typically called
a“hard drive”). Although not shown, a magnetic disk drive for
reading from and writing to a removable, non-volatile mag-
netic disk (e.g., a “floppy disk™), and an optical disk drive for
reading from or writing to a removable, non-volatile optical
disk such as a CD-ROM, DVD-ROM or other optical media
can be provided. In such instances, each can be connected to
bus 908 by one or more data media interfaces. As will be
further depicted and described below, memory 906 may
include atleast one program product having a set (e.g., at least
one) of program modules that are configured to carry out the
functions of embodiments of the invention.

Program/utility 914, having a set (at least one) of program
modules 916, may be stored in memory 906 by way of
example, and not limitation, as well as an operating system,
one or more application programs, other program modules
(e.g., job migrator 132, listener 124, etc., and program data.
Each of the operating system, one or more application pro-
grams, other program modules, and program data or some
combination thereof, may include an implementation of a
networking environment. Program modules 916 generally
carry out the functions and/or methodologies of embodiments
of'the invention as described herein, such as the operations of
the logging program 8.

Computer node 902 may also communicate with one or
more external devices 918 such as a keyboard, a pointing
device, a display 920, etc.; one or more devices that enable a
user to interact with the computer node 902; and/or any
devices (e.g., network card, modem, etc.) that enable com-
puter system/server 902 to communicate with one or more
other computing devices. Such communication can occur via
Input/Output (I/0) interfaces 922. Still yet, computer node
902 can communicate with one or more networks such as a
local area network (LLAN), a general wide area network
(WAN), and/or a public network (e.g., the Internet) via net-
work adapter 924. As depicted, network adapter 924 commu-
nicates with the other components of computer system/server
902 via bus 908. It should be understood that although not
shown, other hardware and/or software components could be
used in conjunction with computer system/server 902.
Examples, include, but are not limited to: microcode, device

US 9,246,816 B2

9

drivers, redundant processing units, external disk drive
arrays, RAID systems, tape drives, and data archival storage
systems, etc.

The terms “an embodiment”, “embodiment”, “embodi-
ments”, “the embodiment”, “the embodiments”, “one or
more embodiments”, “some embodiments”, and “one
embodiment” mean “one or more (but not all) embodiments
of the present invention(s)” unless expressly specified other-
wise.

The terms “including”, “comprising”, “having” and varia-
tions thereof mean “including but not limited to”, unless
expressly specified otherwise.

The enumerated listing of items does not imply that any or
all of the items are mutually exclusive, unless expressly speci-
fied otherwise.

The terms “a”, “an” and “the” mean “one or more”, unless
expressly specified otherwise.

Devices that are in communication with each other need
not be in continuous communication with each other, unless
expressly specified otherwise. In addition, devices that are in
communication with each other may communicate directly or
indirectly through one or more intermediaries.

A description of an embodiment with several components
in communication with each other does not imply that all such
components are required. On the contrary a variety of
optional components are described to illustrate the wide vari-
ety of possible embodiments of the present invention.

Further, although process steps, method steps, algorithms
or the like may be described in a sequential order, such pro-
cesses, methods and algorithms may be configured to work in
alternate orders. In other words, any sequence or order of
steps that may be described does not necessarily indicate a
requirement that the steps be performed in that order. The
steps of processes described herein may be performed in any
order practical. Further, some steps may be performed simul-
taneously.

When a single device or article is described herein, it will
be readily apparent that more than one device/article (whether
or not they cooperate) may be used in place of a single
device/article. Similarly, where more than one device or
article is described herein (whether or not they cooperate), it
will be readily apparent that a single device/article may be
used in place of the more than one device or article or a
different number of devices/articles may be used instead of
the shown number of devices or programs. The functionality
and/or the features of a device may be alternatively embodied
by one or more other devices which are not explicitly
described as having such functionality/features. Thus, other
embodiments of the present invention need not include the
device itself.

The illustrated operations of the figures show certain
events occurring in a certain order. In alternative embodi-
ments, certain operations may be performed in a different
order, modified or removed. Moreover, steps may be added to
the above described logic and still conform to the described
embodiments. Further, operations described herein may
occur sequentially or certain operations may be processed in
parallel. Yet further, operations may be performed by a single
processing unit or by distributed processing units.

The foregoing description of various embodiments of the
invention has been presented for the purposes of illustration
and description. It is not intended to be exhaustive or to limit
the invention to the precise form disclosed. Many modifica-
tions and variations are possible in light of the above teaching.
It is intended that the scope of the invention be limited not by
this detailed description, but rather by the claims appended
hereto. The above specification, examples and data provide a

10

15

20

25

30

35

40

45

50

55

60

10

complete description of the manufacture and use of the com-
position of the invention. Since many embodiments of the
invention can be made without departing from the spirit and
scope of the invention, the invention resides in the claims
herein after appended.
What is claimed is:
1. A computer program product for testing a link between
a selected adaptor and a linked adaptor each comprising one
of a plurality of adaptors in network components linked in a
network including a containing network component includ-
ing the selected adaptor and a linked network component
including the linked adaptor, the computer program product
comprising a non-transitory computer readable storage
medium having computer readable program code embodied
therein that executes to perform operations, the operations
comprising:
receiving a congestion request for the selected adaptor at
the containing network component, wherein the conges-
tion request is to test the network by introducing con-
gestion at the link between the selected adaptor and the
linked adaptor; and
in response to the received congestion request, delaying
servicing the selected adaptor to introduce congestion
on a link between the selected adaptor and the linked
adaptor to cause congestion in the network to test how at
least one of the network components handle errors
resulting from the congestion.
2. The computer program product of claim 1, wherein the
congestion request identifies a selected port in the selected
adaptor, wherein the delay in servicing is with respect to the
selected port.
3. The computer program product of claim 2, wherein the
operations further comprise:
setting a flag for the port in port information indicating to
delay the servicing of the port, wherein the delaying in
servicing comprises:
initiating a service routine with respect to the selected
port;
determining whether the flag indicates to delay the ser-
vicing in response to determining to perform the ser-
vice operation;
performing the servicing of the selected port in response
to determining the flag does not indicate to delay the
servicing; and
completing the service routine without performing the
servicing of the selected port in response to determin-
ing the flag indicates to delay the servicing.
4. The computer program product of claim 1, wherein the
congestion request does not cause delay in servicing other
ports in the selected adaptor or another adaptor in the con-
taining network component.
5. The computer program product of claim 1, wherein the
congestion request specifies a delay duration, wherein the
delay in servicing the selected adaptor occurs for at least the
delay duration and wherein normal servicing of the selected
adaptor occurs following the delay of servicing for the delay
duration.
6. The computer program product of claim 5, wherein the
operations further comprise:
in response to the delay of servicing exceeding the delay
duration, servicing the selected adaptor and resetting a
delay start time, wherein the resetting of the delay start
time period causes another iteration of delaying the ser-
vicing of the selected adaptor for the delay duration; and

not performing the servicing of the selected adaptor in
response to the delay of servicing extending for less than
the delay duration.

US 9,246,816 B2

11

7. The computer program product of claim 1, wherein the
congestion request causes the selected adaptor to stop return-
ing buffer credits to the linked adaptor which causes the
linked adaptor to run out of credits for the selected adaptor
and stop sending frames to the selected adaptor, and resulting
in network congestion.

8. The computer program product of claim 1, wherein the
congestion request is processed by an adaptor driver execut-
ing in the containing network component and wherein the
adaptor driver delays the servicing.

9. The computer program product of claim 8, wherein the
adaptor driver delays the servicing by delaying allocating
buffers in the containing network component to the selected
adaptor to use for buffering frames from the linked adaptor,
and impeding the selected adaptor from returning credits to
the linked adaptor when there are no further available buffers
to use.

10. A system for testing a network comprised of network
components including hosts and at least one switch, wherein
the network components include adaptors to enable network
communication among the network components, compris-
ing:

a processor; and

a non-transitory computer readable storage medium hav-

ing code executed by the processor to perform opera-
tions, the operations comprising:
receiving a congestion request for a selected adaptor of the
adaptors at a containing network component comprising
one of the network components, wherein the congestion
request is to test the network by introducing congestion
at a link between the selected adaptor and a linked adap-
tor comprising one of the adaptors; and
in response to the received congestion request, delaying
servicing the selected adaptor to introduce congestion
on the link between the selected adaptor and the linked
adaptor to cause congestion in the network to test how at
least one of the network components handle errors
resulting from the congestion.
11. The system of claim 10, wherein the congestion request
identifies a selected port in the selected adaptor, wherein the
delay in servicing is with respect to the selected port.
12. The system of claim 10 , wherein the congestion
request specifies a delay duration, wherein the delay in ser-
vicing the selected adaptor occurs for at least the delay dura-
tion and wherein normal servicing of the selected adaptor
occurs following the delay of servicing for the delay duration.
13. The system of claim 12, wherein the operations further
comprise:
in response to the delay of servicing exceeding the delay
duration, servicing the selected adaptor and resetting a
delay start time, wherein the resetting of the delay start
time period causes another iteration of delaying the ser-
vicing of the selected adaptor for the delay duration; and

not performing the servicing of the selected adaptor in
response to the delay of servicing extending for less than
the delay duration.

14. The system of claim 10, wherein the congestion request
causes the selected adaptor to stop returning buffer credits to
the linked adaptor which causes the linked adaptor to run out
of credits for the selected adaptor and stop sending frames to
the selected adaptor, and resulting in network congestion.

10

15

20

25

30

35

40

45

50

55

60

12

15. The system of claim 10, wherein the congestion request
is processed by an adaptor driver executing in the containing
network component and wherein the adaptor driver delays the
servicing.
16. The system of claim 15, wherein the adaptor driver
delays the servicing by delaying allocating buffers in the
containing network component to the selected adaptor to use
for buffering frames from the linked adaptor, and impeding
the selected adaptor from returning credits to the linked adap-
tor when there are no further available buffers to use.
17. A method for testing a network comprised of network
components including hosts and at least one switch, wherein
the network components include adaptors to enable network
communication among the network components, compris-
ing:
receiving a congestion request for a selected adaptor com-
prising one of the adaptors at a containing network com-
ponent comprising one of the network components,
wherein the congestion request is to test the network by
introducing congestion at a link between the selected
adaptor and a linked adaptor comprising one of the adap-
tors; and
in response to the received congestion request, delaying
servicing the selected adaptor to introduce congestion
on the link between the selected adaptor and the linked
adaptor to cause congestion in the network to test how at
least one of the network components handle errors
resulting from the congestion.
18. The method of claim 17, wherein the congestion
request identifies a selected port in the selected adaptor,
wherein the delay in servicing is with respect to the selected
port.
19. The method of claim 17, wherein the congestion
request specifies a delay duration, wherein the delay in ser-
vicing the selected adaptor occurs for at least the delay dura-
tion and wherein normal servicing of the selected adaptor
occurs following the delay of servicing for the delay duration.
20. The method of claim 19, further comprising:
in response to the delay of servicing exceeding the delay
duration, servicing the selected adaptor and resetting a
delay start time, wherein the resetting of the delay start
time period causes another iteration of delaying the ser-
vicing of the selected adaptor for the delay duration; and

not performing the servicing of the selected adaptor in
response to the delay of servicing extending for less than
the delay duration.

21. The method of claim 17, wherein the congestion
request causes the selected adaptor to stop returning buffer
credits to the linked adaptor which causes the linked adaptor
to run out of credits for the selected adaptor and stop sending
frames to the selected adaptor, and resulting in network con-
gestion.

22. The method of claim 17, wherein the congestion
request is processed by an adaptor driver executing in the
containing network component and wherein the adaptor
driver delays the servicing.

23. The method of claim 22, wherein the adaptor driver
delays the servicing by delaying allocating buffers in the
containing network component to the selected adaptor to use
for buffering frames from the linked adaptor, and impeding
the selected adaptor from returning credits to the linked adap-
tor when there are no further available buffers to use.

#* #* #* #* #*

